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9.7 Statistical Methods 

9.7.1 Statistical and Analytical Plan 
All statistical inference will be based on a two-sided 0.05 level of significance and two-sided 
95% confidence intervals. 

Study Populations 
Subjects will be grouped according to randomization groups: TXA versus placebo. Unless 
otherwise specified, all efficacy analyses will be by a modified intention to treat (mITT) 
strategy among activated subjects as described below. All subjects who were activated to 
study drug will be included in the analyses in the treatment group to which they were randomly 
assigned.  Subjects who were activated for study drug will be included in the 
analyses, even if they stop study drug “early”, cross over between treatment groups, or 
receive prophylactic transfusions not in accordance with the protocol. 

1. Efficacy Population 
    The mITT population used for efficacy analyses will be comprised of all randomized  
    patients for whom an order for administration of study drug is activated. Efficacy 
    analyses on these patients will use data gathered from the time the order for study drug 
    was activated until 30 days post activation. Randomized patients who develop exclusion 
    criteria prior to activation of study drug and who thus are excluded from receipt of study 
    drug and patients whose platelet counts never drop below the 30K threshold for 
    activation of study drug will not be included in the primary efficacy population.  

2. Safety Population 
The population used for safety analyses will be all patients who receive any amount of 
study drug. Follow-up for mortality and thrombotic events will occur at 120 days post 
activation. Other adverse events and serious adverse events will be collected for 30 
days post discontinuation of study drug, with visual examinations occurring weekly for 
two weeks after discontinuation of study drug. SOS (VOD), AEs, and SAEs will be based 
on clinical diagnosis and patient report during the surveillance period. The frequency of 
follow-up will differ between inpatients and outpatients, with the former based on daily 
visits by the research coordinators and the latter based on patient diaries and 
semiweekly clinic visits (while still on study drug) or weekly contacts (after 
discontinuation of study drug 

 

Demographic and Baseline Characteristics 
Demographic and baseline characteristics will be presented in tables stratified by 
treatment arm, clinical site and therapeutic group (allogeneic transplant, autologous 
transplant, or leukemia). Demographic variables will include age, sex, race, ethnicity, 
height, weight, BMI and primary diagnosis. Baseline lab values will include platelets, 
hematocrit, serum creatinine, prothrombin time (PT), international normalized ratio (INR), 
partial thromboplastin time (PTT), fibrinogen, D-dimer, thrombin time, hemoglobin and 
HLA PRA. Subject dispositions will also be presented, and the table will indicate total 
screened, consented, randomized, activated, completed therapy, safety follow-up and 
long-term follow-up. 

Primary Efficacy Analyses 
The odds of bleeding at WHO grade 2 level or above will be analyzed in a logistic 
regression model adjusting for treatment arm, clinical site as a factored variable, and 
therapeutic group (allogeneic transplant, autologous transplant, or leukemia) as a 
factored variable. The test statistic will be a Wald test based on the score for the 



treatment arm parameter from the logistic regression model with adjustment for multiply 
imputed missing data.  

log
𝑝

1 − 𝑝
= 𝛽0 + 𝛽1𝑋𝑡 + 𝛽2𝑍1 + 𝛽3𝑍2 + 𝛽4𝑊1 + 𝛽5𝑊2 

In the above full model, 𝑝 refers to the probability of a WHO grade 2+ bleed conditional 
on the covariates. 𝛽0 represents the log odds of bleeding for a subject in the placebo 
group, and in the reference site and reference therapeutic group (UNC and allogeneic, 
respectively). 𝛽1 is the log odds ratio of bleeding between placebo and treatment arms 

for fixed site and therapeutic group. The parameters 𝛽2, 𝛽3 represent the log odds ratio 
between UPT and UNC and between UWM and UNC, respectively, for a fixed treatment 
arm and therapeutic group. Similarly, 𝛽4, 𝛽5 are the log odds ratios between autogenic 
and allogenic and between chemotherapy and allogenic groups, for a fixed site and 
treatment arm. 𝑍1, 𝑍2, 𝑊1, 𝑊2 are indicator variables: 𝑍1 = 1 if the subject is from UPT, 

𝑍2 = 1 if from UWM, 𝑊1 = 1 if in autogenic therapy, 𝑊2 = 1 if in chemotherapy. 
 
The analysis of the primary endpoint, in order to adjust for multiply imputed data, will use 
the score for the treatment parameter evaluated at the null hypothesis in a Wald test. In 
this case, the null hypothesis 𝜃0 has the treatment parameter 𝛽1 = 0 and all other 𝛽𝑗 =

𝛽̂𝑗  (𝑗 = 0,2,3,4,5) their respective maximum likelihood estimates. We give the form of the 

relevant score below (where 𝑋 is the matrix of covariates, 𝑋𝑖 refers to the 𝑖th row and 𝑋1𝑖 
refers to the element in the 𝑖th row and the column corresponding to 𝛽1). 

𝑈1 = ∑ 𝑋1𝑖(𝑌𝑖 − 𝑝𝑖(𝜃0)

𝑛

𝑖=1

)  

𝑝𝑖(𝜃0) =
𝑒𝑋𝑖𝜃0  

1 + 𝑒𝑋𝑖𝜃0
 

The variance of the score is the element of the observed Information matrix (derivative of 
the score) that corresponds to the score of interest. 

𝑉𝑎𝑟(𝑈1) = ∑ 𝑋1𝑖
2 𝑝𝑖(𝜃0)(1 − 𝑝𝑖(𝜃0))

𝑛

𝑖=1

 

 
Further discussion is presented in the missing data section along with R code for 
performing the analysis. 
 

Secondary Analyses 
The secondary endpoints of mean number of platelet transfusions and the mean number 
of days alive without WHO grade 2 level or above bleeding will each be analyzed in a 
linear regression model adjusting for treatment arm, clinical site as a factored variable, 
and therapeutic group (allogeneic transplant, autologous transplant, or leukemia) as a 
factored variable. The test statistic will be based on the Wald statistic (parameter 
estimate divided by its standard error) as computed for the treatment arm parameter 
from the linear regression model using the Huber-White sandwich estimator for standard 
errors to account for possible heteroscedasticity and adjusting for multiply imputed data.  
 

 lmTrans <- lm(ptrans ~ treatment +  

    site + group) 

lmWHODays <- lm(days ~ treatment +  

    site + group) 



  

Other Analyses 
Analysis of the supportive and exploratory endpoints will be conducted using regression 
models adjusting for treatment arm, clinical site as a factored variable, and therapeutic 
group (allogeneic transplant, autologous transplant, or leukemia) as a factored variable. 
Linear regression will be used for endpoints measuring the days free of bleeding and 
highest grade of bleeding, logistic regression will be used for binary endpoints, and 
proportional hazards regression will be used for times to event. The Huber-White 
sandwich estimator of the standard error will be used to allow for departures from the 
model based variance estimates, and adjustment will be made for multiply imputed 
missing data.  

 

library(“survival”) 

lmBleedFree <- lm(free ~ treatment +  

    site + group) 

lmHiBleed <- lm(hibleed ~ treatment +  

    site + group) 

lmBleedDth <- glm(bleeddth ~ treatment +  

    site + group,family=”binomial”) 

lmFirstBleed <- coxph(fBleed ~ treatment + 

    site + group) 

lmPltTrans <- lm(pltTrans ~ treatment +  

    site + group) 

lmRedTrans <- lm(redTrans ~ treatment +  

    site + group) 

lmNoPlt <- glm(noPlt ~ treatment +  

    site + group,family=”binomial”) 

lmNoRed <- glm(noRed ~ treatment + 

    site + group,family=”binomial”) 

lmNadir <- glm(hiNadir ~ treatment +  

    site + group,family=”binomial”) 

 

Subgroup Analyses 
WHO grade 2 or above bleeding will be assessed separately among patients who did 
and did not have bleeding at randomization, as well as within each of the therapeutic 
groups of allogeneic transplant, autologous transplant and leukemia. This will be 
performed similar to regression models above by restricting to the dataset as described. 

Safety Analyses 
The safety endpoints will be tabulated and presented without inferential statistics. These 
endpoints, AEs, SAEs, thrombotic events, incidence of VOD, all-cause mortality, and 
death due to thrombosis, will each be tabulated by treatment arm and primary diagnosis 
group.  

Missing Data 
Patients will be followed for all clinical trial outcomes regardless of their adherence to the 
prescribed regimen for the study drug (TXA or placebo). Very few patients are expected 



to withdraw consent, though there will undoubtedly be some cases in which the data are 
missing for one or more of the primary, secondary, or supporting analyses due to 
withdrawal of consent or competing risks.  
 
Initial analyses of primary and secondary endpoints will be based on missing-at-random 
(MAR) models that condition on the patients’ absolute neutrophil counts (ANC), site, 
therapeutic group and days since randomization to study drug. In the MAR model, data 
will be imputed by assuming that patients with missing data will be presumed to have 
distributions of outcomes the same as that observed in comparable patients who have 
complete data.  
 
Sensitivity analyses for the primary endpoint will use missing not at random (MNAR) 
models to reflect increased or decreased odds of bleeding among patients with 
incomplete data. Each treatment arm will be parameterized separately, and the 
robustness of any estimated treatment effect to those varying levels of dependence 
between early death or withdrawal of consent and incidence of bleeding will be 
quantified. Additional models will consider separate mechanisms for early death and 
withdrawal of consent. 
 
Primary Endpoint 
The model for the primary endpoint will be proportional hazards of the effect of treatment 
arm stratified by therapeutic group. The model will include a time-varying binary 
covariate of high (greater than 500) versus low (less than 500) ANC and a factored site 
variable.  
 
The following model will be fit for complete-case data to estimate the baseline hazard for 
each treatment stratum. Then the residual hazard will be estimated for censored 
subjects based on observed subjects within the same site and with the same ANC state 
on the day of censoring. Sampling from this hazard function will provide imputed values 
for use in the primary analysis. 

𝜆𝑍(𝑡) = 𝜆𝑍0
(𝑡) exp {𝛽1,𝑍𝐴𝑖(𝑡) + ∑ 𝛽𝑗+1,𝑍1𝐶𝑖=𝑗

3

𝑗=1

} 

𝜆𝑍  represents the hazard function for the 𝑍th treatment arm, 𝜆0 the baseline hazard, 

𝐴𝑖(𝑡) the most recent ANC state on day 𝑡 for the 𝑖th subject and 1𝐶𝑖=𝑗 being the indicator 

function for whether the subject belonged to the 𝑗th site. 
 

𝜆(𝑙)(𝑡) = 𝜆𝑍0
(𝑡) exp {𝛽1,𝑍𝐴(𝑙)(𝑡) + ∑ 𝛽𝑗+1,𝑍1𝑐(𝑙)=𝑗

3

𝑗=1

} 

This model represents the residual hazard for the 𝑙th subject with missing data; 𝐴(𝑙)(𝑡) is 

the most recent ANC state on day frozen at the day of censoring for the 𝑙th subject 
(described further in implementation below); the other parameters remain the same as 
before. 
 
During sensitivity analyses, to reflect the MNAR models, the first model above will be 
scaled with a sensitivity term 𝛼𝑍 for each treatment arm to represent increased or 
decreased odds of bleeding, so we will sample from the hazard 𝛼𝑍𝜆𝑍(𝑡) for a given 
treatment arm. A tipping point analysis will be conducted by performing the imputation 
and primary analysis using the following values for each 𝛼𝑍: 0.75, 0.80, 0.85, 0.90, 0.95, 



1.00, 1.05, 1.10, 1.15, 1.20, 1.25. Determining how far the analysis can deviate from the 
MAR model with significant results will contextualize and improve the validity of the 
conclusions of the study. 
 
The process for coding this in R follows. First, the data are collected into a “wide” data 
frame, which contains columns for case ID, case site, therapeutic group, date of 
activation, number of days on study, indicator of WHO grade 2+ bleed (1 if a bleed 
occurred within 30 days of activation, 0 if no bleed occurred but the subject was followed 
for 30 days of activation, or NA if withdrawn for any reason before 30 days without a 
bleed), date of first bleed (NA if no bleed) and then a variable for the ANC count (above 
or below 500) for each of the 30 days post-activation. For the purposes of this analysis, 
the day of activation is considered to begin at midnight of the first day, bleeding occurred 
at noon on the day of recording and the ANC count recorded is the first measured of the 
day. 
 
At the same time, missing ANC counts are filled in with the most recent ANC count (i.e. if 
a subject’s ANC count is missing, then it is replaced with the last non-missing ANC count 
that the subject had). 
 
Then this dataset is changed into a “long” format, where each subject has as many rows 
as the smallest of 30, days until first bleed, and days until withdrawn from study. Keeping 
the other variables constant across the rows, the 30 ANC count variables are collapsed 
into a single variable corresponding to the daily ANC count (again, above or below 500).  
 
This long dataset, restricted to the treatment arm and only for rows with non-missing 
values for bleed, becomes the argument for the “coxph” function in R, which is used to 
estimate the baseline hazards and regression coefficients for treatment arm.  
 
Then a single imputation step is as follows after specifying the seed 20170615 (first day 
of screening). Each subject with a missing value for bleed is to be filled in. First, the 
“wide” dataset is trimmed at the day of censoring for such a subject by removing all ANC 
counts corresponding to days after withdrawal (NA values). The last remaining column is 
then copied to re-fill the removed columns until 30 days of ANC counts exist. This 
effectively “freezes” the ANC counts to the day of censoring. This “wide” dataset is once 
again converted to long, restricted to the particular subject missing bleed data. The new 
long dataset, coupled with the previously estimated baseline hazard corresponding to 
the appropriate treatment arm, is used to estimate a residual hazard function unique to 
the subject. This is the function from which a single sample is drawn; if the sample 
corresponds to a bleed within the 30 day period, then the previously-missing bleed is 
filled as 1, otherwise it is 0. Then this process is repeated for all rows with missing 
values for bleed. Finally, the primary efficacy analysis is conducted and the score for the 
treatment variable and its variance recorded. 
 
Then the imputation is repeated 𝑘 = 20 times to produce 20 different values for the 
score and variance in the primary efficacy analysis. These are combined into an 
estimated score, which is the mean of the imputed scores and an estimated variance, 
which is the sum of the mean of the imputed variances and the variance of the imputed 
scores. Then a Wald test will compare the combined estimate and standard error with 
the standard normal distribution. 



𝑝 = 2 ∗ 𝑃𝑟 (|
𝜃𝑘̂

𝑆𝐸̂(𝜃𝑘̂)
| > 𝑧𝛼) 

 
The code is attached in an appendix. 
 
Secondary Endpoints 
We will use a random regression model of multiple imputation for the both of the 
secondary endpoints: number of days alive without WHO grade 2+ bleeding and number 
of platelet transfusions within 30 days after activation. In a previous version of the SAP, 
the imputation scheme for the platelet transfusions outcome involved hot deck 
imputation. This has been changed in this updated SAP to parallel the imputation 
scheme for the number of days alive outcome variable. 
 
The number of days alive without such bleeding will be regressed against treatment arm, 
therapeutic stratum, site and number of days on study within the efficacy window. In 
addition, anticipating that subjects will likely either bleed numerous times or bleed 
relatively infrequently, an additional covariate will be included that indicates if a subject 
had 2 or more days in sequence of WHO grade 2+ bleeding within the efficacy window.  
 
The model will be similar for the number of platelet transfusions within 30 days after 
activation: The number of such transfusions will be regressed against treatment arm, 
therapeutic stratum, site and number of days on study within the efficacy window. In 
addition, anticipating that subjects will likely either be transfused numerous times (but 
likely not as frequently on adjacent days) or relatively infrequently, an additional 
covariate will be included that indicates if a subject had 2 or more transfusions within a 
7-day within the efficacy window.  
 
First, these models will be fit for the complete-case data. The standard deviation of the 
error will be estimated by resampling 1000 times from the errors (difference between 
observed and predicted days of bleeding). Then a single imputation will fill in the 
outcome variable. These imputed data will be drawn from a normal distribution with 
mean given by the predicted values using the complete-case fit and standard deviation 
given by the resampled estimate from the complete-case model. With this imputed data 
set, the estimate for the treatment arm parameter and its standard error will be 
computed and recorded based on the model for the secondary endpoint analysis. The 
seed for imputations will be the same as above 20170615. 
 
The imputation is then repeated 𝑘 = 20 times to produce 20 different estimates of the 
parameter value and estimates of the variance. The parameter estimates will be 
combined by taking the mean of all of the estimates, and the standard errors will be 
combined by taking the square root of the sum of the mean of the 𝑘 estimated variances 
and the variance of the 𝑘 parameter estimates. Then a Wald test will compare the 
combined estimate and standard error with the standard normal distribution. 

𝑝 = 2 ∗ 𝑃𝑟 (|
𝜃𝑘̂

𝑆𝐸̂(𝜃𝑘̂)
| > 𝑧𝛼) 

 
set.seed(20170615) 

library(sandwich) 

reps <- 20 # 20 replications for the imputations below 



##### days: number of days alive without WHO grade 2+ bleeding 

 

dat <- 

actBase[,c("caseid","trt","site","group","daysonstudy")] 

dat$days <- dat$availDays <- dat$bleedinarow <- 

rep(NA,nrow(actBase)) 

for (i in 1:length(actBleeds)){ 

  tmpBld <- actBleeds[[i]]  

  availDts <- floor(tmpBld$JDates)-actBase$activ[i]+1 # all 

days with any bleeding entry 

  maxDate <- ifelse(actBase$stopReason[i]=="Death" & 

actBase$daysonstudy[i] < 30,actBase$daysonstudy[i],30) 

  effDays <- 1:maxDate  

   

  anyMiss <- any(!effDays %in% availDts) 

   

  bleedIdx <- as.numeric(tmpBld$maxBldgrade) >= 2 & (availDts 

>= 1 & availDts <= maxDate) 

   

  dat$bleedinarow[i] <- 

any(diff(floor(tmpBld$JDates[bleedIdx])) == 1) # if any 

bleeding days are adjacent 

  dat$availDays[i] <- 

sum(as.numeric(tmpBld$maxBldgrade[availDts >= 1 & availDts <= 

maxDate]) < 2) # even if there are some days with missing 

bleeds, record the available days alive without WHO 2+ 

   

  if (anyMiss){ 

    dat$days[i] <- NA # there is missing bleeding 

  } else { 



    dat$days[i] <- sum(as.numeric(tmpBld$maxBldgrade[availDts 

>= 1 & availDts <= maxDate]) < 2) # "official" days without 

WHO 2+ in efficacy period 

  } 

   

} 

 

dat$predDays <- dat$predSD <- rep(NA,nrow(dat)) 

for (arm in 1:2){ 

  armTmp <- c("TXA","PBO")[arm] 

   

  dat.arm <- dat[dat$trt==armTmp,] 

  lm.complete <- lm(days ~ site + group + bleedinarow + 

daysonstudy,data=dat.arm) # complete case regression 

   

  dat$predDays[dat$trt==armTmp] <- 

predict(lm.complete,dat.arm) # get the predicted values for 

all in the treatment arm 

   

  lm.errors <- residuals(lm.complete) # gets the residuals 

  lm.sd <- rep(NA,1000) 

  for (i in 1:1000){ 

    samp <- sample(lm.errors,length(lm.errors),replace=TRUE) 

    lm.sd[i] <- sd(samp) 

  } 

   

  dat$predSD[dat$trt==armTmp] <- mean(lm.sd) # mean resampled 

error 

} 



 

days.imps <- data.frame(est=rep(NA,reps),estVar=rep(NA,reps)) 

# initialize regression imputation dataset 

for (i in 1:reps){ 

  days.predicted <- rnorm(nrow(dat),dat$predDays,dat$predSD) 

  impDays <- impute(dat$days,days.predicted) # only missing 

data are imputed 

   

  # impDays <- pmax(impute(dat$days,days.predicted), # only 

missing data are imputed 

  #                dat$availDays) # a predicted value cannot 

be smaller than the observed value 

   

  lmWHODays.impute <- lm(impDays ~ dat$trt +  

                           dat$site + dat$group) # impDays is 

outcome but covariates from analysis dataset 

  days.imps[i,] <- c(coef(lmWHODays.impute)[2], 

                     sandwich(lmWHODays.impute)[2,2]) 

} 

days.est <- mean(days.imps[,1]) 

days.se <- sqrt(var(days.imps[,1])+mean(days.imps[,2]))  

 

days.stat <- days.est/days.se 

days.p <- 2*pnorm(abs(days.stat),lower.tail=FALSE) # wald p-

value from imputation 

days.ci <- days.est+qnorm(c(0.025,0.975))*days.se 

 

##### transf: number of platelet transfusions within first 30 

days post activation 



actTransf <- transfusions[names(transfusions) %in% 

actBase$caseid] 

ntransf <- NULL 

transfrow <- NULL 

for (i in 1:length(actTransf)){ 

  tf <- actTransf[[i]] 

  dts <- tf$xPltJDates- actBase$activ[i] # changed from using 

ceiling; equivalent code, but more in line with other coding 

  ntransf <- c(ntransf,sum(dts >= 0 & dts < 30)) 

  transfrow <- c(transfrow,any(diff(dts[dts >= 0 & dts < 30]) 

<= 7)) 

} 

 

dat <- 

as.data.frame(cbind(actBase$caseid,actBase$trt,actBase[,c(2,3,

5)],ntransf,transfrow)) # only keep relevant columns 

colnames(dat) <- 

c("caseid","trt",colnames(actBase[,c(2,3,5)]),"transf","transf

row") 

 

dat$predTransf <- dat$predSD <- rep(NA,nrow(dat)) 

for (arm in 1:2){ 

  armTmp <- c("TXA","PBO")[arm] 

   

  dat.arm <- dat[dat$trt==armTmp,] 

  lm.complete <- lm(transf ~ site + group + transfrow + 

daysonstudy,data=dat.arm) # complete case regression 

   

  dat$predTransf[dat$trt==armTmp] <- 

predict(lm.complete,dat.arm) # get the predicted values for 

all in the treatment arm 



   

  lm.errors <- residuals(lm.complete) # gets the residuals 

  lm.sd <- rep(NA,1000) 

  for (i in 1:1000){ 

    samp <- sample(lm.errors,length(lm.errors),replace=TRUE) 

    lm.sd[i] <- sd(samp) 

  } 

   

  dat$predSD[dat$trt==armTmp] <- mean(lm.sd) # mean resampled 

error 

} 

 

transf.imps <- 

data.frame(est=rep(NA,reps),estVar=rep(NA,reps)) # initialize 

regression imputation dataset 

for (i in 1:reps){ 

  transf.predicted <- 

rnorm(nrow(dat),dat$predTransf,dat$predSD)  

  imptransf <- impute(dat$transf,transf.predicted) # only 

missing data are imputed 

  lmWHOtransf.impute <- lm(imptransf ~ dat$trt +  

                           dat$site + dat$group) # imptransf 

is outcome but covariates from analysis dataset 

  transf.imps[i,] <- c(coef(lmWHOtransf.impute)[2], 

                     sandwich(lmWHOtransf.impute)[2,2]) 

} 

transf.est <- mean(transf.imps[,1]) 

transf.se <- sqrt(var(transf.imps[,1])+mean(transf.imps[,2]))  

 



transf.stat <- transf.est/transf.se 

transf.p <- 2*pnorm(abs(transf.stat),lower.tail=FALSE) # wald 

p-value from imputation 

transf.ci <- transf.est+qnorm(c(0.025,0.975))*transf.se 

9.7.2 Sample Size and Precision of Statistical Inference 
1. Minimal Clinically Important Difference 

Based on results observed in the PLADO study for patients who meet the general 
eligibility criteria for the A-TREAT study, it is anticipated that 57% of eligible patients 
would experience WHO Grade 2 bleeding or higher in the absence of antifibrinolytic 
therapy. In such a background setting of bleeding, the study investigators anticipate that 
less than a 10% relative reduction in bleeding rates would not be sufficient to 
substantially change clinical practice, because the absolute risk reduction of 5.7% would 
mean that it would be necessary to treat approximately 17.5 patients in order for the 
treatment to have impact on 1 patient (“Number Needed to Treat” (NNT) = 17.5). As 
much as a 25% relative reduction in bleeding rates would likely be judged sufficient to 
change clinical practice, because with an absolute risk reduction of 14.25%, the NNT of 
approximately 7 patients might be acceptable, provided no new safety issues related to 
antifibrinolysis in the thrombocytopenic population are uncovered. The A-TREAT 
investigators hypothesize that TXA will be associated with a relative reduction of 30% or 
higher (absolute reduction of 17%) based on observational data relative to their prior 
clinical experience. 

2. Sequential Stopping Rules 
The conduct of the A-TREAT study will be overseen by an independent Data and Safety 
Monitoring Board (DSMB) who will enhance patient safety by monitoring study progress 
and integrity, incidence of AEs and SAEs, and interim estimates of treatment effect on 
bleeding. The DSMB will be guided by a group sequential stopping rule to judge the 
scientific and statistical credibility of interim results on the bleeding endpoints.  

 
While the exact stopping rule will be chosen in discussion with the DSMB (and 
documented in the Statistical Analysis Plan finalized prior to the first interim analysis at 
which the DSMB will see unblinded data), the A-TREAT investigators propose a 
stopping rule that would allow early stopping only if a one-sided level 0.20 O’Brien-
Fleming stopping boundary suggested that TXA was associated with more bleeding than 
placebo. There would be no early stopping boundary for efficacy of TXA over placebo, 
with the final critical value for efficacy providing a one-sided 0.025 level of significance.  
 
The following table presents example stopping boundaries that might correspond to an 
observed combined event rate of 0.485 (such as might be observed with 57% events on 
the placebo arm and 40% events on the TXA arm). Using the R package RCTdesign (or 
equivalently, S-Plus S+SeqTrial), a stopping boundary having three analyses at 50%, 
75% and 100% of the planned sample size and with a level 0.2 O’Brien-Fleming 
boundary for harm would be computed using the RCTdesign code: 

 
 seqDesign(prob.model = "prop", null.hypothesis = 0.57, 

  alt.hypothesis = 0.4, nbr.analyses = 3,  

  sample.size = c(165, 248, 330), test.type = 

"two.sided",  



      power = "calculate", alpha = c(0.025, 0.2),  

   P = c(Inf, 1)) 

 
For this example stopping boundary, the following table presents the critical values for 
harm and the corresponding adjusted statistical inference at each of the formal interim 
analyses. Critical values are expressed in terms of the crude estimate of treatment effect 
(TXA bleeding rate minus control bleeding rate), a Z statistic, and a one-sided fixed 
sample P value testing for harm. The adjusted statistical inference is a point estimate 
based on the bias adjusted mean and 95% confidence intervals and one-sided P values 
testing for harm using the likelihood ratio ordering of the outcome space. 

Analysis Stopping Boundaries Adjusted Inference 

 N 
Crude 

Estimate 
Z 

Fixed 
P val 

Estimate 95% CI 
One-sided 

P value 

50% 165 0.111 1.440 .075 0.095 (-.004, .181) 0.123 

75% 248 0.074 1.175 .120 0.059 (-.018, .132) 0.178 

100% 330 0.055 1.019 .154 0.043 (-.022, .115) 0.200 

 
Rationale: Owing to the need for adequate safety data, even if TXA is associated with 
markedly less bleeding than placebo, there is an imperative to gather safety data on the 
full sample size. Because TXA is currently being used off-label in the thrombocytopenic 
setting, it is important to document any harm due to TXA treatment, rather than just 
documenting the absence of a markedly beneficial effect. 

 
3. Sample Size 

Calculation of sample size and statistical power were made using S+SeqTrial based on 
the chi-squared test of association, which is equivalent to the score test from simple 
logistic regression. Based on 1:1 randomization, a one-sided level of significance 0.025, 
a design alternative hypothesis of 30% relative reduction in bleeding rates (57% on the 
placebo arm and 40% on TXA), a sample size of 330 subjects (165 TXA, 165 placebo) 
will provide 88% statistical power to declare statistical significance on the primary 
endpoint. This sample size will provide 74.8% statistical power to detect a 25% relative 
reduction in bleeding rates (57% vs 42.75%). 

 
4. Precision of Inference for Efficacy 

With the planned sample size and a placebo bleeding rate of 57%, an observed absolute 
decrease in WHO grade 2 or above bleeding of 10.6% (so 57% on placebo, 46.4% on 
TXA) would be judged statistically significant. Such an absolute difference in rates 
corresponds to a NNT of 9.4. If the baseline placebo bleeding rate were instead 40%, 
the threshold for statistical significance would be an absolute reduction of 10.14% (NNT 
= 9.9), and a baseline placebo rate of 70% would have a threshold of 10.35% (NNT = 
9.7). These results are judged to be of the magnitude to possibly affect clinical practice, 
and allow for some added loss of precision with multiply imputed missing data. 

 
5. Precision of Inference for Safety 

This study is not powered to establish the definitive safety of the treatment with respect 
to the frequency of VTE. However, an observed difference in frequency of VTE of 3.7% 
on the placebo arm and 5.5% or less on the TXA therapy arm would result in a 95% 
confidence interval that excluded a relative risk of 3.0. 
 

  



library(survival) 

library(sandwich) 

 

impSeed <- 20170615 

 

# helper functions for below 

 

na.locf <- function(vec){ # perform LOCF 

  for (i in 2:length(vec)){ 

    vec[i] <- ifelse(!is.na(vec[i]),vec[i],vec[i-1]) 

  } 

  return(vec) 

} 

 

makeLong <- function(dat){ # a function that shifts from 

wide (column for each event day) to long 

  longdat <- 

data.frame(caseid=NULL,trt=NULL,site=NULL,group=NULL,start

=NULL,end=NULL,bleed=NULL,count=NULL) 

  nm <- 

c("caseid","trt","site","group","tstart","tend","bleed","c

ount") 

  for (i in 1:length(dat$caseid)){ 

    for (j in 

1:min(dat$daysonstudy[i],dat$eventday[i],na.rm=TRUE)){ 

      longdat <- 

rbind(longdat,c(dat$caseid[i],dat$trt[i],dat$site[i],dat$g

roup[i],j-1,j, 

                                 

ifelse(is.na(dat$bleed)[i],0, 

                                        

ifelse(!is.na(dat$eventday[i]) & j==dat$eventday[i] & 

dat$bleed[i]==1,1,0)), 

                                 dat[i,7+j])) # This may 

need to be changed to point to the right column in true 

data 

    } 

  } 

  colnames(longdat) <- nm 

  longdat$trt <- as.logical(longdat$trt) 

  longdat$tstart <- as.numeric(longdat$tstart) 

  longdat$tend <- as.numeric(longdat$tend) 

  longdat$bleed <- as.numeric(longdat$bleed) 

  longdat$count <- as.logical(longdat$count) 

  return(longdat) 



} 

 

logisticScore <- function(datIn,est,nullHyp){ # compute 

the score and expected information for testing if trt==0 

  x <- model.matrix(bleed ~ site + group + trt,data=datIn) 

  y <- datIn[,"bleed"] 

  nullest <- c(est,nullHyp) # we maximize under 

trt=nullHyp for est, then include trt=nullHyp for score  

  nullp <- exp(x %*% nullest)/(1+exp(x %*% nullest)) # MLE 

under null hypothesis 

  scorevec <- t(x) %*% (y-nullp) 

  scorevar <- t(x) %*% 

diag(as.numeric(nullp)*as.numeric(1-

nullp),nrow=length(nullp),ncol=length(nullp)) %*% x 

  return(list(score=scorevec,info=scorevar)) 

} 

 

treatScoreTest <- function(datImp,nullHyp){ 

  lmFit <- glm(bleed ~ site + group+offset(nullHyp*trt), # 

maximizes under some null hypothesis (default to coef=0)  

      family="binomial",data=datImp) 

  lmCoef <- coef(lmFit) 

  scoreOut <- logisticScore(datImp,lmCoef,nullHyp) 

   

  trtScore <- scoreOut[[1]][6] # treatment element of 

score 

  trtVar <- scoreOut[[2]][6,6]-scoreOut[[2]][6,-6] %*% 

solve(scoreOut[[2]][-6,-6]) %*% scoreOut[[2]][-6,6] # 

variance of treatment element of score after estimating 

nuisance parameters 

  return(c(trtScore,trtVar)) 

} 

 

 

impute <- function(x,x.imp) ifelse(is.na(x),x.imp,x) # 

replace missing values of x with x.imp 

 

# ------------------------------- Primary Efficacy 

Analysis ---------------------- 

 

### Expect a data frame structure with the following 

variables: 

# caseid, treatment arm, casesite, therapeutic group, days 

on study (1-30), 



# bleed (0=no bleed during 30 days, 1=bleed, NA=withdrew 

before 30 days), day of bleed 

# 30 variables for each day of ANC count (high/low) 

 

### Then we want to build "imps" number of data sets for 

each row with bleed = NA 

 

### Note the long format described below has one row for 

each study day for each caseid, and variables: 

# caseid, treatment arm, casesite, therapeutic group, 

tstart (0 to (daysonstudy-1)), tend(1 to daysonstudy), 

# bleed (0, 1, NA), ANC count 

 

### Imputation Scheme as Follows: 

# 0. Reduce the data set to only complete case data and 

change to long format  

# 1. Fit coxph model for each trt*stratum (estimate 

baseline hazard and coefficients) on the complete data 

# 2. Repeat the following for each row with bleed = NA 

(consider row "i") 

# 2a. Re-build the data set by removing all ANC columns 

after ith days on study 

# 2b. Copy the final column to fill back to 30 columns of 

ANC 

# 2c. Now use the data to estimate the hazard function for 

that subject by plugging into the appropriate trt*stratum 

coefficients 

# 3. Use the resultant hazard functions to sample possible 

event times and repeat "imps" number of times 

# 4. Combine the estimates from K = 20 imputation models 

with Wald test 

# 5. Adjust the above fixed-sample test for sequential 

monitoring with RCTdesign 

 

 

 

# Build the analysis dataset: step 0 

actPt <- !is.na(studyJDates$activate) # Does not use the 

activation based on platelet 

actBase <- 

data.frame(caseid=baseline$caseid[actPt],site=baseline$cas

esite[actPt],group=baseline$stratum[actPt], 

                      

activ=studyJDates$activate[actPt],daysonstudy=studyJDates$



effobstime[actPt],totalstudy=studyJDates$endstudy[actPt]-

studyJDates$activate[actPt], 

                      

stopReason=studyDates$studystopreason[actPt],deathCause=st

udyDates$textcausedeath[actPt]) 

 

actBase$trt <- 

trtDF$trt[match(actBase$caseid,trtDF$caseid)] # use the 

correct randomization 

 

actBleeds <- bleeds[names(bleeds) %in% actBase$caseid] # 

get the bleed object for activated cases 

bleedCols <- data.frame(bleed=NULL,eventday=NULL) # set up 

an object that will record first bleed 2+ and their dates 

 

naInt <- vector(mode="list",length(actBleeds)) # will 

store the intervals with missingness 

 

for (i in 1:length(actBleeds)){ 

  bld <- actBleeds[[i]] 

  bld2 <- (as.numeric(bld$maxBldgrade) >= 2) & (bld$stage 

== "efficacy") 

   

  availDts <- floor(bld$JDates)-actBase$activ[i]+1 

  naDts <- (1:30)[!1:30 %in% availDts] # which days are 

not available 

   

  if (sum(bld2) > 0){ 

    bldInfo <- c(1,bld$JDates[min(which(bld2))]-

actBase$activ[i]+1) # there is a 2+ bleed 

    naInt[[i]] <- NA # do not worry about missingness 

  } else if (actBase$daysonstudy[i] == 30 & 

length(naDts)==0) { # CHANGE: checks to make sure that 

there are 30 bleed entries 

    bldInfo <- c(0,NA) # 30 days of bleed entries and no 

bleed 

    naInt[[i]] <- NA # no missingness at all 

  } else { 

    bldInfo <- c(NA,min(naDts)) # someone to impute, give 

the first day of missingness as "eventday" 

    naInt[[i]] <- naDts 

  } 

  bleedCols <- rbind(bleedCols,bldInfo) 

} 

colnames(bleedCols) <- c("bleed","eventday") 



names(naInt) <- actBase$caseid 

 

actLabs <- labs[names(labs) %in% actBase$caseid] # get the 

labs for activated subjects 

labCols <- NULL # object that will hold 30 days of ANC  

for (i in 1:length(actLabs)){ 

  lb <- actLabs[[i]]$ANC 

  dts <- floor(lb$JDates) - actBase$activ[i]+1 # ensures 

that ANC is counted on the day it happened, day 1 is all 

day after activation 

  dtIdx <- !duplicated(dts) & (dts >= 1) & (dts <= 30) # 

takes the first  ANC measurement on each day in efficacy 

window 

  cnt <- rep(NA,30) # initialize a vector of 30 days of 

ANC 

  cnt[dts[dtIdx]] <- lb$value[dtIdx] <= 0.5 # low ANC <= 

500 

  cnt <- na.locf(cnt) # LOCF  

  labCols <- rbind(labCols,cnt) 

} 

 

# set up an analysis dataset dat 

dat <- 

as.data.frame(cbind(actBase$caseid,actBase$trt,actBase[,c(

2,3,5)],bleedCols,labCols)) # only keep relevant columns 

colnames(dat) <- 

c("caseid","trt",colnames(actBase[,c(2,3,5)]),colnames(ble

edCols),paste("day",1:30,sep="")) 

longdatComp <- makeLong(dat[!is.na(dat$bleed),]) # makes 

ANC into a time-varying covariate for coxph 

 

# Begin the imputation procedure: step 1 

bHaz <- function(trt,longdat){ 

  dat <- longdat[longdat$trt==trt,] 

  lm <- 

with(dat,coxph(Surv(time=tstart,time2=tend,event=bleed)~si

te+count+cluster(caseid)+strata(group))) # cox model with 

time-varying ANC and robust SE 

  return(lm) 

} 

 

lmPlc <- bHaz(0,longdatComp) # get the baseline hazard in 

placebo and control groups 

lmTrt <- bHaz(1,longdatComp) 

bList <- list(lmPlc,lmTrt) 



 

oneimp <- function(bList,datInc){ # the function that 

creates one imputed dataset and outputs the score test on 

treatment parameter 

  naCases <- is.na(datInc$bleed) # get the cases with 

missing bleed 

  for (i in 1:sum(naCases)){ 

    naDay <- datInc$eventday[naCases][i]-1 # the last day 

with recorded data 

    naTrt <- datInc$trt[naCases][i] 

    naCase <- datInc$caseid[naCases][i] # grab the caseid 

     

    # step 2 

    truncData <- datInc[,1:(7+naDay)] # take the columns 

up until the last day of data 

    frzCol <- datInc[,(naDay+7)] 

    frzData <- cbind(truncData,matrix(rep(frzCol,30-

naDay),ncol=30-

naDay,nrow=dim(datInc)[1]))[which(naCases)[i],] # choose 

the subject of interest 

    impData <- makeLong(frzData) 

     

    lmNum <- ifelse(naTrt==0,1,2) 

    lm <- bList[[lmNum]] # returns appropriate baseline lm 

     

    # step 3 

    predSurvival <- survfit(lm,impData) # predict survival 

based on imputed data 

     

    empCDF <- 1-as.matrix(predSurvival$surv)[,1] # 

survival estimates for 30 days 

    invCDF <- function(prob) { # takes in a probability 

and returns the smallest t (# of days) to achieve that 

probability 

      min(which(empCDF >= prob)) # specific eCDF 

    } 

    u <- runif(1) 

    t <- invCDF(u) 

     

    missItvl <- naInt[[match(naCase,names(naInt))]] 

    iBleed <- ifelse(t %in% missItvl,1,0) # if bleed would 

have occurred in 30 days (after time we actually observed) 

then fill in 

    datInc$bleed[naCases][i] <- iBleed 

  } 



  return(datInc)  # return the filled in data set 

} 

 

# step 4 

set.seed(impSeed) 

reps <- 20 

 

impDatasets <- vector("list",reps) 

bleedLogistImps <- bleedLogistImpsMLE <- 

matrix(nrow=reps,ncol=2) 

for (k in 1:reps){ 

  impOut <- oneimp(bList=bList,dat=dat) 

  impDatasets[[k]] <- impOut # save the imputed data sets 

for use in interval estimation 

  impFit <- glm(bleed ~ site + group+trt,  

                family="binomial",data=impOut) # the full 

model fit on the imputed data 

  bleedLogistImps[k,] <- treatScoreTest(impOut,0) 

  bleedLogistImpsMLE[k,] <- 

c(coef(impFit)[6],sandwich(impFit)[6,6]) 

} 

bleedLogistFixed <- mean(bleedLogistImps[,1]) / 

sqrt(mean(bleedLogistImps[,2]) + var(bleedLogistImps[,1])) 

# wald-imputed test statistic 

bleedLogistFixed.p <- 

pnorm(bleedLogistFixed,lower.tail=FALSE) # one-sided, 

upper wald p-value from imputation 

 

bleedLogistFixedOR <- exp(mean(bleedLogistImpsMLE[,1])) 

 

# step 5 

source("finalRCTDesign.R") # this should output a final 

seqDesign object 'atreatFinal' 

 

# bleedLogistSeq <- 

seqInference(atreatFinal,observed=bleedLogistFixed, # 

convert the fixed-sample wald statistic to sequential 

monitor 

                               # 

analysis.index=3,ordering="l",inScale="Z") # use the LR 

ordering 

 

bleedLogistSeq <- 

seqInference(atreatFinal,observed=bleedLogistFixed.p, # 

convert the fixed-sample p-value to sequential monitor 



                              

analysis.index=3,ordering="l",inScale="P") # use the LR 

ordering 

 

bleedLogistSeq.p <- 

2*min(bleedLogistSeq$PvalueL.LROrder,bleedLogistSeq$Pvalue

U.LROrder) # two-sided final p-value 

 

digOR <- 2 

digP <- 3 

 

print(paste0("OR=",round(bleedLogistFixedOR,digOR), 

             " P=",round(bleedLogistSeq.p,digP)) 

      ) 

 

 

 

##########################################################

########################### 

# Above code computed the multiple imputation- and 

sequential monitoring-adjusted p-value and multiple 

imputation-adjusted OR 

# Code below computes the multiple imputation- and 

sequential monitoring-adjusted confidence interval 

 

# 1. Function to compute the multiple imputation- and 

sequential monitoring-adjusted p-value for different 

"null" hypotheses 

# 2. Use the multiple imputation-adjusted Wald CI to guide 

a grid search across different "null" hypotheses 

#     want to collect the points at which the lower 

endpoint switches from <0.025 to >0.025 and upper switches 

from <0.975 to >0.975 

 

 

alphaLevel <- 0.05 

lowerCrit <- alphaLevel/2 

upperCrit <- 1-lowerCrit 

 

 

### Step 1: Repeat much of the same code as above to 

compute the multiple imputation- and sequential 

monitoring-adjusted p-value 

 



oneP <- function(nullP,impDataList=impDatasets){ # needs a 

"null" to test at and the list contaning imputed datasets 

  ## Changes to above code: do not need to return MLE, 

returns 2-sided p-value rather than 1-sided 

   

  bleedLogistImps <- 

matrix(nrow=length(impDataList),ncol=2) 

  for (k in 1:length(impDataList)){ 

    bleedLogistImps[k,] <- 

treatScoreTest(impDataList[[k]],nullP) 

  } 

  bleedLogistFixed <- mean(bleedLogistImps[,1]) / 

sqrt(mean(bleedLogistImps[,2]) + var(bleedLogistImps[,1])) 

# wald-imputed test statistic 

  bleedLogistFixed.p <- 

pnorm(bleedLogistFixed,lower.tail=FALSE) # one-sided, 

upper wald p-value from imputation 

   

  # step 5 

  bleedLogistSeq <- 

seqInference(atreatFinal,observed=bleedLogistFixed.p, # 

convert the fixed-sample p-value to sequential monitoring 

                                 

analysis.index=3,ordering="l",inScale="P") # use the LR 

ordering 

   

  bleedLogistSeq.p <- 

2*min(bleedLogistSeq$PvalueL.LROrder,bleedLogistSeq$Pvalue

U.LROrder) # two-sided final p-value 

   

  return(bleedLogistSeq.p) 

} 

 

 

 

### Step 2a: compute the fixed sample CI as a coarse guide 

for the final CI grid search 

 

bleedLogistFixedLogOR <- mean(bleedLogistImpsMLE[,1]) 

bleedLogistFixedLogORSE <- 

sqrt(var(bleedLogistImpsMLE[,1])+mean(bleedLogistImpsMLE[,

2])) 

 

coarseCI <- 

bleedLogistFixedLogOR+qnorm(c(lowerCrit,upperCrit),0,1)*bl



eedLogistFixedLogORSE # coarse CI (NOTE: this is on the 

parameter or log(OR) scale!) 

 

### Step 2b: function to perform grid search given initial 

values 

 

gridSearch <- function(inits,tol,lower=TRUE){ # requires 

initial guess and tolerance, lower versus upper changes 

the inequalities due to ordering of parameter values; uses 

global variable of significance levels 

  if (lower){ # moves from rejecting "null" to accepting 

    seqRange <- seq(inits[1],inits[2],length.out=1/tol) 

    seqP <- rep(NA,length(seqRange)) 

    for (i in 1:length(seqRange)){ 

      seqP[i] <- oneP(seqRange[i]) # compute the p-value 

with the given "null" hypothesis 

      if (i==1 & seqP[i] >= alphaLevel) { 

        stop("Need smaller lower guess") # no switch 

possible in the given range 

      } else if (i==length(seqRange) & seqP[i] < 

alphaLevel){ 

        stop("Need larger upper guess") # no switch 

happened in the given range 

      } else { 

        if (i > 1){ 

          if (seqP[i] >=alphaLevel & seqP[i-1] < 

alphaLevel){ 

            switchVals <- c(seqRange[i-1],seqRange[i]) # 

stores the points at which it switches significance 

            break # found the switching point! 

          } 

        } 

      } 

      # if (i %% 5==0) print(i) 

    } 

  } else { # moves from accepting null to rejecting  

    seqRange <- seq(inits[1],inits[2],length.out=1/tol) 

    seqP <- rep(NA,length(seqRange)) 

    for (i in 1:length(seqRange)){ 

      seqP[i] <- oneP(seqRange[i]) # compute the p-value 

with the given "null" hypothesis 

      if (i==1 & seqP[i] < alphaLevel) { 

        stop("Need smaller lower guess") # no switch 

possible in the given range 



      } else if (i==length(seqRange) & seqP[i] >= 

alphaLevel){ 

        stop("Need larger upper guess") # no switch 

happened in the given range 

      } else { 

        if (i > 1) { 

          if(seqP[i] < alphaLevel & seqP[i-1] >= 

alphaLevel){ 

            switchVals <- c(seqRange[i-1],seqRange[i]) # 

stores the points at which it switches significance 

            break # found the switching point! 

          } 

        } 

      } 

      # if (i %% 5==0) print(i) 

    } 

  } 

  return(switchVals) 

} 

 

computeCI <- 

function(inits=c(coarseCI[1],coarseCI[2]),tolFine=1e-

3,tolCoarse=1e-1,coarseFactor=1){ # requires initial CI 

guess, and tol is how expensive of a search; tol must be 

<1e-2 

   

  ### compute lower bound: when does it cross from <0.025 

to >= 0.025 

  coarseLowerInits <- inits[1]+c(-

1,1)*diff(inits)*coarseFactor 

  coarseLowerSwitch <- 

gridSearch(coarseLowerInits,tolCoarse,lower=TRUE) 

  fineLowerSwitch <- 

gridSearch(coarseLowerSwitch,tolFine,lower=TRUE) 

   

   

  ### compute upper bound: when does it cross from <= 

0.975 to >0.975 

  coarseUpperInits <- inits[2]+c(-

1,1)*diff(inits)*coarseFactor 

  coarseUpperSwitch <- 

gridSearch(coarseUpperInits,tolCoarse,lower=FALSE) 

  fineUpperSwitch <- 

gridSearch(coarseUpperSwitch,tolFine,lower=FALSE) 

   



  # return(c(coarseLowerSwitch[1],coarseUpperSwitch[2])) # 

return the limits that are barely rejected by hypothesis 

tests 

  return(c(fineLowerSwitch[1],fineUpperSwitch[2])) # 

return the limits that are barely rejected by hypothesis 

tests 

} 

 

coarseTol <- 1e-1 

fineTol <- 1e-3 

coarseWidthFactor <- 1 

 

bleedLogistSeq.CI <- 

computeCI(tolCoarse=coarseTol,tolFine=fineTol,coarseFactor

=coarseWidthFactor) # final confidence interval 

 

print(paste0("95% CI: 

(",round(exp(bleedLogistSeq.CI[1]),3),", 

",round(exp(bleedLogistSeq.CI[2]),3),")")) 


